Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc by (c) Jerónimo Hernández-González et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/190042

Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Embryo selection is a critical step in assisted reproduction: good selection criteria are expected to increase the probability of inducing a pregnancy. Machine learning techniques have been applied for implantation prediction or embryo quality assessment, which embryologists can use to make a decision about embryo selection. However, this is a highly uncertain real-world problem, and current proposals do not model always all the sources of uncertainty. We present a novel probabilistic graphical model that accounts for three different sources of uncertainty, the standard embryo and cycle viability, and a third one that represents any unknown factor that can drive a treatment to a failure in otherwise perfect conditions. We derive a parametric learning method based on the Expectation-Maximization strategy, which accounts for uncertainty issues. We empirically analyze the model within a real database consisting of 604 cycles (3125 embryos) carried out at Hospital Donostia (Spain). Embryologists followed the protocol of the Spanish Association for Reproduction Biology Studies (ASEBIR), based on morphological features, for embryo selection. Our model predictions are correlated with the ASEBIR protocol, which validates our model. The benefits of accounting for the different sources of uncertainty and the importance of the cycle characteristics are shown. Considering only transferred embryos, our model does not further discriminate them as implanted or failed, suggesting that the ASEBIR protocol could be understood as a thorough summary of the available morphological features.

Citació

Citació

HERNÁNDEZ-GONZÁLEZ, Jerónimo, VALLS, Olga, TORRES MARTÍN, Adrián, CERQUIDES BUENO, Jesús. Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models. _Computers in Biology and Medicine_. 2022. Vol. 150, núm. 106160. [consulta: 24 de gener de 2026]. ISSN: 0010-4825. [Disponible a: https://hdl.handle.net/2445/190042]

Exportar metadades

JSON - METS

Compartir registre