Modeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models

dc.contributor.authorHernández-González, Jerónimo
dc.contributor.authorValls, Olga
dc.contributor.authorTorres Martín, Adrián
dc.contributor.authorCerquides Bueno, Jesús
dc.date.accessioned2022-10-20T09:59:43Z
dc.date.available2022-10-20T09:59:43Z
dc.date.issued2022-10-05
dc.date.updated2022-10-20T09:59:44Z
dc.description.abstractEmbryo selection is a critical step in assisted reproduction: good selection criteria are expected to increase the probability of inducing a pregnancy. Machine learning techniques have been applied for implantation prediction or embryo quality assessment, which embryologists can use to make a decision about embryo selection. However, this is a highly uncertain real-world problem, and current proposals do not model always all the sources of uncertainty. We present a novel probabilistic graphical model that accounts for three different sources of uncertainty, the standard embryo and cycle viability, and a third one that represents any unknown factor that can drive a treatment to a failure in otherwise perfect conditions. We derive a parametric learning method based on the Expectation-Maximization strategy, which accounts for uncertainty issues. We empirically analyze the model within a real database consisting of 604 cycles (3125 embryos) carried out at Hospital Donostia (Spain). Embryologists followed the protocol of the Spanish Association for Reproduction Biology Studies (ASEBIR), based on morphological features, for embryo selection. Our model predictions are correlated with the ASEBIR protocol, which validates our model. The benefits of accounting for the different sources of uncertainty and the importance of the cycle characteristics are shown. Considering only transferred embryos, our model does not further discriminate them as implanted or failed, suggesting that the ASEBIR protocol could be understood as a thorough summary of the available morphological features.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725898
dc.identifier.issn0010-4825
dc.identifier.urihttps://hdl.handle.net/2445/190042
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.compbiomed.2022.106160
dc.relation.ispartofComputers in Biology and Medicine, 2022, vol. 150, p. 106160
dc.relation.urihttps://doi.org/10.1016/j.compbiomed.2022.106160
dc.rightscc by (c) Jerónimo Hernández-González et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationReproducció humana assistida
dc.subject.classificationEmbriologia humana
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationProbabilitats
dc.subject.classificationEstadística matemàtica
dc.subject.otherHuman reproductive technology
dc.subject.otherHuman embryology
dc.subject.otherMachine learning
dc.subject.otherProbabilities
dc.subject.otherMathematical statistics
dc.titleModeling three sources of uncertainty in assisted reproductive technologies with probabilistic graphical models
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typeinfo:eu-repo/semantics/article

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725898.pdf
Mida:
2.17 MB
Format:
Adobe Portable Document Format