Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Malchair, Pierre; Elsevier B.V., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/214193

Bayesian analysis of the ICAT·COVID randomized clinical trial

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This communication provides new effect measures in the multiplicative scale from the ICAT·COVID randomized clinical trial, obtained through Bayesian statistics. These could not be calculated using the traditional frequentist statistics included in the original publication because the benefits of icatibant (a competitive antagonist of the bradykinin B2 receptors) on top of standard care in patients with COVID-19 pneumonia were such that there were no events in the active group.1 Additive effect measures (eg, risk differences) are the most appropriate measures for identifying the population groups that will benefit most from interventions in presence of interactions acting as effect modifiers.2 However, an aspect that multiplicative measures provide where additive effect measures cannot, is an indication of how many times interventions or exposures increase or decrease disease risk (eg, risk ratio, hazard ratio). Furthermore, multiplicative measures are more commonly used in epidemiology, and are more appropriate for outcome measures with strictly positive values, such as counts and the numerators of incidence rates.

Citació

Citació

MALCHAIR, Pierre, VILLORIA, Jesús, GIOL, Jordi, JACOB, Javier, CARNAVAL, Thiago, VIDELA, Sebastià. Bayesian analysis of the ICAT·COVID randomized clinical trial. _Clinical Therapeutics_. 2024. Vol. 46, núm. 2, pàgs. 176-180. [consulta: 21 de gener de 2026]. ISSN: 0149-2918. [Disponible a: https://hdl.handle.net/2445/214193]

Exportar metadades

JSON - METS

Compartir registre