Identification of texts generated by AI (ChatGPT)

dc.contributor.advisorCortés Martínez, Jordi
dc.contributor.advisorFernández Martínez, Daniel
dc.contributor.authorBravo de Dios, Yaiza
dc.date.accessioned2024-05-28T16:11:20Z
dc.date.available2024-05-28T16:11:20Z
dc.date.issued2023-06
dc.descriptionTreballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2022-2023, Tutor: Jordi Cortés Martínez i Daniel Fernández Martínezca
dc.description.abstractThis bachelor's final project aims to address the challenge of identifying texts generated by artificial intelligence (AI) systems. The project implements several classification models, including Classification Trees, Random Forests, Logistic Models, and Support Vector Machines to identify AI-generated texts. These models are trained on a dataset which consists of 160 texts of human and AI-generated texts, with the goal of accurately distinguishing them. The project also includes the implementation of a Shiny application, providing a user-friendly interface for text identification. Among the models evaluated, the Logistic Model achieves the highest accuracy, with 86%.ca
dc.format.extent88 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/212020
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Bravo, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Estadística UB-UPC
dc.subject.classificationIntel·ligència artificialcat
dc.subject.classificationInformàticacat
dc.subject.classificationEstadísticacat
dc.subject.classificationTreballs de fi de grau
dc.subject.otherArtificial intelligenceeng
dc.subject.otherComputer Scienceeng
dc.subject.otherStatisticseng
dc.subject.otherBachelor's theseseng
dc.titleIdentification of texts generated by AI (ChatGPT)ca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG_EST_Bravo_2023.pdf
Mida:
1.54 MB
Format:
Adobe Portable Document Format
Descripció: