Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/183656
Idempotent Fourier multipliers acting contractively on $H^{P}$ spaces
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We describe the idempotent Fourier multipliers that act contractively on $H^{p}$ spaces of the $d$-dimensional torus $\mathbb{T}^{d}$ for $d \geq 1$ and $1 \leq p \leq \infty .$ When $p$ is not an even integer, such multipliers are just restrictions of contractive idempotent multipliers on $L^{p}$ spaces, which in turn can be described by suitably combining results of Rudin and Andô. When $p=2(n+1)$, with $n$ a positive integer, contractivity depends in an interesting geometric way on $n, d$, and the dimension of the set of frequencies associated with the multiplier. Our results allow us to construct a linear operator that is densely defined on $H^{p}\left(\mathbb{T}^{\infty}\right)$ for every $1 \leq p \leq \infty$ and that extends to a bounded operator if and only if $p=2,4, \ldots, 2(n+1)$.
Matèries (anglès)
Citació
Citació
BREVIG, Ole fredrik, ORTEGA CERDÀ, Joaquim, SEIP, Kristian. Idempotent Fourier multipliers acting contractively on $H^{P}$ spaces. _Geometric and Functional Analysis_. 2021. Vol. 31, núm. 6, pàgs. 1377-1413. [consulta: 24 de gener de 2026]. ISSN: 1016-443X. [Disponible a: https://hdl.handle.net/2445/183656]