Idempotent Fourier multipliers acting contractively on $H^{P}$ spaces
| dc.contributor.author | Brevig, Ole Fredrik | |
| dc.contributor.author | Ortega Cerdà, Joaquim | |
| dc.contributor.author | Seip, Kristian | |
| dc.date.accessioned | 2022-03-01T09:14:07Z | |
| dc.date.available | 2022-03-01T09:14:07Z | |
| dc.date.issued | 2021-12-27 | |
| dc.date.updated | 2022-03-01T09:14:07Z | |
| dc.description.abstract | We describe the idempotent Fourier multipliers that act contractively on $H^{p}$ spaces of the $d$-dimensional torus $\mathbb{T}^{d}$ for $d \geq 1$ and $1 \leq p \leq \infty .$ When $p$ is not an even integer, such multipliers are just restrictions of contractive idempotent multipliers on $L^{p}$ spaces, which in turn can be described by suitably combining results of Rudin and Andô. When $p=2(n+1)$, with $n$ a positive integer, contractivity depends in an interesting geometric way on $n, d$, and the dimension of the set of frequencies associated with the multiplier. Our results allow us to construct a linear operator that is densely defined on $H^{p}\left(\mathbb{T}^{\infty}\right)$ for every $1 \leq p \leq \infty$ and that extends to a bounded operator if and only if $p=2,4, \ldots, 2(n+1)$. | |
| dc.format.extent | 37 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 715847 | |
| dc.identifier.issn | 1016-443X | |
| dc.identifier.uri | https://hdl.handle.net/2445/183656 | |
| dc.language.iso | eng | |
| dc.publisher | Springer Verlag | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1007/s00039-021-00586-0 | |
| dc.relation.ispartof | Geometric and Functional Analysis, 2021, vol. 31, num. 6, p. 1377-1413 | |
| dc.relation.uri | https://doi.org/10.1007/s00039-021-00586-0 | |
| dc.rights | cc by (c) Brevik, Ole Fredrik, 2021 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Anàlisi harmònica | |
| dc.subject.classification | Funcions de variables complexes | |
| dc.subject.other | Harmonic analysis | |
| dc.subject.other | Functions of complex variables | |
| dc.title | Idempotent Fourier multipliers acting contractively on $H^{P}$ spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1