Idempotent Fourier multipliers acting contractively on $H^{P}$ spaces

dc.contributor.authorBrevig, Ole Fredrik
dc.contributor.authorOrtega Cerdà, Joaquim
dc.contributor.authorSeip, Kristian
dc.date.accessioned2022-03-01T09:14:07Z
dc.date.available2022-03-01T09:14:07Z
dc.date.issued2021-12-27
dc.date.updated2022-03-01T09:14:07Z
dc.description.abstractWe describe the idempotent Fourier multipliers that act contractively on $H^{p}$ spaces of the $d$-dimensional torus $\mathbb{T}^{d}$ for $d \geq 1$ and $1 \leq p \leq \infty .$ When $p$ is not an even integer, such multipliers are just restrictions of contractive idempotent multipliers on $L^{p}$ spaces, which in turn can be described by suitably combining results of Rudin and Andô. When $p=2(n+1)$, with $n$ a positive integer, contractivity depends in an interesting geometric way on $n, d$, and the dimension of the set of frequencies associated with the multiplier. Our results allow us to construct a linear operator that is densely defined on $H^{p}\left(\mathbb{T}^{\infty}\right)$ for every $1 \leq p \leq \infty$ and that extends to a bounded operator if and only if $p=2,4, \ldots, 2(n+1)$.
dc.format.extent37 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec715847
dc.identifier.issn1016-443X
dc.identifier.urihttps://hdl.handle.net/2445/183656
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00039-021-00586-0
dc.relation.ispartofGeometric and Functional Analysis, 2021, vol. 31, num. 6, p. 1377-1413
dc.relation.urihttps://doi.org/10.1007/s00039-021-00586-0
dc.rightscc by (c) Brevik, Ole Fredrik, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi harmònica
dc.subject.classificationFuncions de variables complexes
dc.subject.otherHarmonic analysis
dc.subject.otherFunctions of complex variables
dc.titleIdempotent Fourier multipliers acting contractively on $H^{P}$ spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
715847.pdf
Mida:
639.78 KB
Format:
Adobe Portable Document Format