Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by (c)  Schöll, N. et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/221351

How politicians learn from citizens' feedback: The case of gender on Twitter

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This article studies how politicians react to feedback from citizens on social media. We use a reinforcementlearning framework to model how politicians respond to citizens’ positive feedback by increasing attention to better received issues and allow feedback to vary depending on politicians’ gender. To test the model, we collect 1.5 million tweets published by Spanish MPs over 3 years, identify gender-issue tweets using a deep-learning algorithm (BERT) and measure feedback using retweets and likes. We find that citizens provide more positive feedback to female politicians for writing about gender, and that this contributes to their specialization in gender issues. The analysis of mechanisms suggests that female politicians receive more positive feedback because they are treated differently by citizens. To conclude, we discuss implications for representation, misperceptions, and polarization.

Citació

Citació

SCHÖLL, Nikolas, GALLEGO DOBÓN, Aina, MENS, Gaël le. How politicians learn from citizens' feedback: The case of gender on Twitter. _American Journal of Political Science_. 2022. Vol. 68, núm. 2, pàgs. 557-574. [consulta: 23 de gener de 2026]. ISSN: 0092-5853. [Disponible a: https://hdl.handle.net/2445/221351]

Exportar metadades

JSON - METS

Compartir registre