Non-finite axiomatizability of first-order Peano Arithmetic

dc.contributor.advisorCasanovas Ruiz-Fornells, Enrique
dc.contributor.authorBerdugo Parada, Sandra
dc.date.accessioned2021-04-09T07:55:07Z
dc.date.available2021-04-09T07:55:07Z
dc.date.issued2020-06-19
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Enrique Casanovas Ruiz-Fornellsca
dc.description.abstract[en] The system of Peano Arithmetic is a system more than enough for proving almost all statements of the natural numbers. We will work with a version of this system adapted to first-order logic, denoted as PA. The aim of this work will be showing that there is no equivalent finitely axiomatizable system. In order to do this, we will introduce some concepts about the complexity of formulas and codification of sequences to prove Ryll-Nardzewski’s theorem, which states that there is no consistent extension of PA finitely axiomatized.ca
dc.format.extent51 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/176007
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Sandra Berdugo Parada, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationTeoria de modelsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria de la provaca
dc.subject.otherModel theoryen
dc.subject.otherBachelor's theses
dc.subject.otherProof theoryen
dc.titleNon-finite axiomatizability of first-order Peano Arithmeticca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
176007.pdf
Mida:
513.82 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria