Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  Jiao, W. et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/208101

A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.

Citació

Citació

JIAO, Wei, ATWAL, Gurnit, POLAK, Paz, KARLIC, Rosa, CUPPEN, Edwin, PCAWG Tumor Subtypes and Clinical Translation Working Group, DANYI, Alexandra, DE RIDDER, Jeroen, VAN HERPEN, Carla, LOLKEMA, Martijn p., STEEGHS, Neeltje, GETZ, Gad, MORRIS, Quaid d., STEIN, Lincoln d., PCAWG Consortium, DEU-PONS, Jordi, FRIGOLA, Joan, GONZÁLEZ-PÉREZ, Abel, MUIÑOS, Ferran, MULARONI, Loris, PICH, Oriol, REYES-SALAZAR, Iker, RUBIO-PEREZ, Carlota, SABARINATHAN, Radhakrishnan, TAMBORERO, David, AYMERICH GREGORIO, Marta, CAMPO GÜERRI, Elias, LÓPEZ GUILLERMO, Armando, GELPI BUCHACA, Josep lluís, RABIONET JANSSEN, Raquel. A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. _Nature Communications_. 2020. Vol. 11, núm. 1, pàgs. 1-12. [consulta: 20 de gener de 2026]. ISSN: 2041-1723. [Disponible a: https://hdl.handle.net/2445/208101]

Exportar metadades

JSON - METS

Compartir registre