Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/208101
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.
Matèries
Matèries (anglès)
Citació
Citació
JIAO, Wei, ATWAL, Gurnit, POLAK, Paz, KARLIC, Rosa, CUPPEN, Edwin, PCAWG Tumor Subtypes and Clinical Translation Working Group, DANYI, Alexandra, DE RIDDER, Jeroen, VAN HERPEN, Carla, LOLKEMA, Martijn p., STEEGHS, Neeltje, GETZ, Gad, MORRIS, Quaid d., STEIN, Lincoln d., PCAWG Consortium, DEU-PONS, Jordi, FRIGOLA, Joan, GONZÁLEZ-PÉREZ, Abel, MUIÑOS, Ferran, MULARONI, Loris, PICH, Oriol, REYES-SALAZAR, Iker, RUBIO-PEREZ, Carlota, SABARINATHAN, Radhakrishnan, TAMBORERO, David, AYMERICH GREGORIO, Marta, CAMPO GÜERRI, Elias, LÓPEZ GUILLERMO, Armando, GELPI BUCHACA, Josep lluís, RABIONET JANSSEN, Raquel. A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. _Nature Communications_. 2020. Vol. 11, núm. 1, pàgs. 1-12. [consulta: 20 de gener de 2026]. ISSN: 2041-1723. [Disponible a: https://hdl.handle.net/2445/208101]