A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns

dc.contributor.authorJiao, Wei
dc.contributor.authorAtwal, Gurnit
dc.contributor.authorPolak, Paz
dc.contributor.authorKarlic, Rosa
dc.contributor.authorCuppen, Edwin
dc.contributor.authorPCAWG Tumor Subtypes and Clinical Translation Working Group
dc.contributor.authorDanyi, Alexandra
dc.contributor.authorde Ridder, Jeroen
dc.contributor.authorvan Herpen, Carla
dc.contributor.authorLolkema, Martijn P.
dc.contributor.authorSteeghs, Neeltje
dc.contributor.authorGetz, Gad
dc.contributor.authorMorris, Quaid D.
dc.contributor.authorStein, Lincoln D.
dc.contributor.authorPCAWG Consortium
dc.contributor.authorDeu-Pons, Jordi
dc.contributor.authorFrigola, Joan
dc.contributor.authorGonzález-Pérez, Abel
dc.contributor.authorMuiños, Ferran
dc.contributor.authorMularoni, Loris
dc.contributor.authorPich, Oriol
dc.contributor.authorReyes-Salazar, Iker
dc.contributor.authorRubio-Perez, Carlota
dc.contributor.authorSabarinathan, Radhakrishnan
dc.contributor.authorTamborero, David
dc.contributor.authorAymerich Gregorio, Marta
dc.contributor.authorCampo Güerri, Elias
dc.contributor.authorLópez Guillermo, Armando
dc.contributor.authorGelpi Buchaca, Josep Lluís
dc.contributor.authorRabionet Janssen, Raquel
dc.date.accessioned2024-02-26T15:43:51Z
dc.date.available2024-02-26T15:43:51Z
dc.date.issued2020-02-05
dc.date.updated2024-02-26T15:43:51Z
dc.description.abstractIn cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary. Surprisingly, adding information on driver mutations reduced accuracy. Our results have clinical applicability, underscore how patterns of somatic passenger mutations encode the state of the cell of origin, and can inform future strategies to detect the source of circulating tumour DNA.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec728364
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2445/208101
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41467-019-13825-8
dc.relation.ispartofNature Communications, 2020, vol. 11, num.1, p. 1-12
dc.relation.urihttps://doi.org/https://doi.org/10.1038/s41467-019-13825-8
dc.rightscc-by (c) Jiao, W. et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Fonaments Clínics)
dc.subject.classificationMutació (Biologia)
dc.subject.classificationGenomes
dc.subject.classificationMetàstasi
dc.subject.otherMutation (Biology)
dc.subject.otherGenomes
dc.subject.otherMetastasis
dc.titleA deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
255384.pdf
Mida:
788.87 KB
Format:
Adobe Portable Document Format