Entropy solutions for the $p(x)$-Laplace equations
| dc.contributor.author | Sanchón, Manel | |
| dc.contributor.author | Urbano, José Miguel | |
| dc.date.accessioned | 2016-03-14T12:17:09Z | |
| dc.date.available | 2016-03-14T12:17:09Z | |
| dc.date.issued | 2009-12 | |
| dc.date.updated | 2016-03-14T12:17:14Z | |
| dc.description.abstract | We consider a Dirichlet problem in divergence form with variable growth, modeled on the $ p(x)$-Laplace equation. We obtain existence and uniqueness of an entropy solution for $ L^1$ data, as well as integrability results for the solution and its gradient. The proofs rely crucially on a priori estimates in Marcinkiewicz spaces with variable exponent, for which we obtain new inclusion results of independent interest. | |
| dc.format.extent | 19 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 569721 | |
| dc.identifier.issn | 0002-9947 | |
| dc.identifier.uri | https://hdl.handle.net/2445/96448 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-09-04399-2 | |
| dc.relation.ispartof | Transactions of the American Mathematical Society, 2009, vol. 361, num. 12, p. 6387-6405 | |
| dc.relation.uri | http://dx.doi.org/10.1090/S0002-9947-09-04399-2 | |
| dc.rights | (c) American Mathematical Society (AMS), 2009 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Equacions en derivades parcials | |
| dc.subject.classification | Operadors el·líptics | |
| dc.subject.classification | Anàlisi funcional no lineal | |
| dc.subject.other | Partial differential equations | |
| dc.subject.other | Elliptic operator | |
| dc.subject.other | Nonlinear functional analysis | |
| dc.title | Entropy solutions for the $p(x)$-Laplace equations | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1