Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Rubén Ballester Bautista et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/218045

Predicting the generalization gap in neural networks using topological data analysis

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Understanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods.

Citació

Citació

BALLESTER BAUTISTA, Rubén, ARNAL I CLEMENTE, Xavier, CASACUBERTA, Carles, MADADI, Meysam, CORNEANU, Ciprian adrian, ESCALERA GUERRERO, Sergio. Predicting the generalization gap in neural networks using topological data analysis. _Neurocomputing_. 2024. Vol. 596. [consulta: 21 de gener de 2026]. ISSN: 0925-2312. [Disponible a: https://hdl.handle.net/2445/218045]

Exportar metadades

JSON - METS

Compartir registre