Predicting the generalization gap in neural networks using topological data analysis

dc.contributor.authorBallester Bautista, Rubén
dc.contributor.authorArnal i Clemente, Xavier
dc.contributor.authorCasacuberta, Carles
dc.contributor.authorMadadi, Meysam
dc.contributor.authorCorneanu, Ciprian Adrian
dc.contributor.authorEscalera Guerrero, Sergio
dc.date.accessioned2025-01-28T09:39:37Z
dc.date.available2025-01-28T09:39:37Z
dc.date.issued2024-09-01
dc.date.updated2025-01-28T09:39:37Z
dc.description.abstractUnderstanding how neural networks generalize on unseen data is crucial for designing more robust and reliable models. In this paper, we study the generalization gap of neural networks using methods from topological data analysis. For this purpose, we compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase, aiming to capture patterns that are linked to the generalization capacity of the network. We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set. Evaluation on two computer vision recognition tasks (CIFAR10 and SVHN) shows competitive generalization gap prediction when compared against state-of-the-art methods.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec748154
dc.identifier.issn0925-2312
dc.identifier.urihttps://hdl.handle.net/2445/218045
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.neucom.2024.127787
dc.relation.ispartofNeurocomputing, 2024, vol. 596
dc.relation.urihttps://doi.org/10.1016/j.neucom.2024.127787
dc.rightscc-by (c) Rubén Ballester Bautista et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTopologia
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherTopology
dc.subject.otherMachine learning
dc.subject.otherNeural networks (Computer science)
dc.titlePredicting the generalization gap in neural networks using topological data analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
859689.pdf
Mida:
2.54 MB
Format:
Adobe Portable Document Format