Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  Farran-Codina, A. et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/225462

The Power of Databases in Unraveling the Nutrition–Health Connection

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This editorial highlights how nutritional databases are essential for understanding the complex relationships between diet and health. These databases collect diverse types of information—such as food composition, dietary intake, health outcomes, and environmental data—and organize them in structured formats that make analysis possible. By integrating data from different sources, researchers can detect patterns and associations that would otherwise remain hidden.

The article emphasizes that as nutritional data grows in volume and complexity, advanced tools like artificial intelligence (AI) and machine learning (ML) are becoming increasingly important. These technologies help extract meaningful insights from large datasets, aid in identifying biomarkers, and support the development of predictive models that go beyond traditional analysis methods.

One of the most promising applications mentioned is the combination of nutritional databases with metabolomics—the study of metabolites in biological systems—which can reveal biochemical responses to dietary components. However, the authors also note challenges, such as the need for validated biomarkers and comprehensive metabolite databases to improve accuracy and usability in research and personalized nutrition.

Overall, the article argues that well-designed databases, supported by modern analytical approaches, are key to advancing nutrition science and informing evidence-based dietary guidelines and policies.

Citació

Citació

FARRAN, Andreu, URPÍ SARDÀ, Mireia. The Power of Databases in Unraveling the Nutrition–Health Connection. _Nutrients_. 2025. Vol. 17, núm. 10. [consulta: 30 de gener de 2026]. ISSN: 2072-6643. [Disponible a: https://hdl.handle.net/2445/225462]

Exportar metadades

JSON - METS

Compartir registre