Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Oriol Tellols Asensi, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185699

Richness of the dynamics at a Shilnikov bifurcation

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] In this work, we study the dynamics exhibited in 3 − dimensional parametric continuous dynamical systems containing a homoclinic orbit to a saddle-focus equilibrium. This setting gives rise to the Shilnikov bifurcation, which can be studied using an appropriate Poincaré section that reduces the original system into a discrete 2 − dimensional one. The bifurcation presents various cases, each showing rich and different dynamics. The Shilnikov Theorem describes one of the possible scenarios. This case follows from a careful analysis of a suitable return map that shows that dynamics in some regions is equivalent to the one of the horseshoe map. To illustrate properties and scenarios appearing at the bifurcation, we derive a family of systems with the desired properties and investigate them numerically.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Arturo Vieiro Yanes

Citació

Citació

TELLOLS ASENSI, Oriol. Richness of the dynamics at a Shilnikov bifurcation. [consulta: 14 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/185699]

Exportar metadades

JSON - METS

Compartir registre