Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/124569

Combining Parametric and Non-Parametric Methods to Compute Value-At-Risk

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

We design a system for calculating the quantile of a random variable that allows us combining parametric and non-parametric estimation methods. This approach is applicable to evaluate the severity of potential losses from existing data records; therefore, it is useful in many areas of economics and risk evaluation. The procedure is based on an initial parametric model assumption and then a nonparametric correction is introduced. In addition, a second correction is proposed so that the value at risk estimator is asymptotically optimal. Our procedure allows smoothing the tail behavior of the empirical distribution. Due to the lack of sample information for extreme values, smoothness in the tail cannot be achieved if classical nonparametric estimators are used. We apply this method to a real problem in the area of motor insurance.

Citació

Citació

ALEMANY LEIRA, Ramon, BOLANCÉ LOSILLA, Catalina, GUILLÉN, Montserrat, PADILLA BARRETO, Alemar elaine. Combining Parametric and Non-Parametric Methods to Compute Value-At-Risk. _Economic Computation and Economic Cybernetics Studies and Research_. 2016. Vol. 50, núm. 4, pàgs. 61-74. [consulta: 21 de gener de 2026]. ISSN: 0424-267X. [Disponible a: https://hdl.handle.net/2445/124569]

Exportar metadades

JSON - METS

Compartir registre