Theta-duality on Prym varieties and a Torelli Theorem
| dc.contributor.author | Lahoz Vilalta, Martí | |
| dc.contributor.author | Naranjo del Val, Juan Carlos | |
| dc.date.accessioned | 2014-02-11T09:45:37Z | |
| dc.date.available | 2014-02-11T09:45:37Z | |
| dc.date.issued | 2013-01-09 | |
| dc.date.updated | 2014-02-11T09:45:37Z | |
| dc.description.abstract | Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 598730 | |
| dc.identifier.issn | 0002-9947 | |
| dc.identifier.uri | https://hdl.handle.net/2445/49710 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2013-05675-9 | |
| dc.relation.ispartof | Transactions of the American Mathematical Society, 2013 | |
| dc.relation.uri | http://dx.doi.org/10.1090/S0002-9947-2013-05675-9 | |
| dc.rights | (c) American Mathematical Society (AMS), 2013 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Varietats abelianes | |
| dc.subject.classification | Corbes | |
| dc.subject.classification | Geometria algebraica | |
| dc.subject.other | Abelian varieties | |
| dc.subject.other | Curves | |
| dc.subject.other | Algebraic geometry | |
| dc.title | Theta-duality on Prym varieties and a Torelli Theorem | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1