Theta-duality on Prym varieties and a Torelli Theorem

dc.contributor.authorLahoz Vilalta, Martí
dc.contributor.authorNaranjo del Val, Juan Carlos
dc.date.accessioned2014-02-11T09:45:37Z
dc.date.available2014-02-11T09:45:37Z
dc.date.issued2013-01-09
dc.date.updated2014-02-11T09:45:37Z
dc.description.abstractLet $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec598730
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/49710
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2013-05675-9
dc.relation.ispartofTransactions of the American Mathematical Society, 2013
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-2013-05675-9
dc.rights(c) American Mathematical Society (AMS), 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats abelianes
dc.subject.classificationCorbes
dc.subject.classificationGeometria algebraica
dc.subject.otherAbelian varieties
dc.subject.otherCurves
dc.subject.otherAlgebraic geometry
dc.titleTheta-duality on Prym varieties and a Torelli Theorem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
598730.pdf
Mida:
301.28 KB
Format:
Adobe Portable Document Format