Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Sáez Ortuño et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/212808

How can entrepreneurs improve digital market segmentation? A comparative analysis of supervised and unsupervised learning algorithms

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The identification of digital market segments to make value-creating propositions is a major challenge for entrepreneurs and marketing managers. New technologies and the Internet have made it possible to collect huge volumes of data that are difficult to analyse using traditional techniques. The purpose of this research is to address this challenge by proposing the use of AI algorithms to cluster customers. Specifically, the proposal is to compare the suitability of supervised algorithms, XGBoost, versus unsupervised algorithms, K-means, for segmenting the digital market. To do so, both algorithms have been applied to a sample of 5 million Spanish users cap tured between 2010 and 2022 by a lead generation start-up. The results show that supervised learning with this type of data is more useful for segmenting markets than unsupervised learning, as it provides solutions that are better suited to entre preneurs' commercial objectives

Citació

Citació

SÁEZ ORTUÑO, Laura, HUERTAS GARCÍA, Rubén, FORGAS COLL, Santiago, PUERTAS I PRATS, Eloi. How can entrepreneurs improve digital market segmentation? A comparative analysis of supervised and unsupervised learning algorithms. _International Entrepreneurship and Management Journal_. 2023. Vol. 19, núm. 1893-1920. [consulta: 20 de gener de 2026]. ISSN: 1554-7191. [Disponible a: https://hdl.handle.net/2445/212808]

Exportar metadades

JSON - METS

Compartir registre