Targeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer

dc.contributor.authorSequeiros, Tamara
dc.contributor.authorRigau, Marina
dc.contributor.authorChiva, Cristina
dc.contributor.authorMontes, Melania
dc.contributor.authorGarcia-Grau, Iolanda
dc.contributor.authorGarcia, Marta
dc.contributor.authorDiaz, Sherley
dc.contributor.authorCelma, Ana
dc.contributor.authorBijnsdorp, Irene
dc.contributor.authorCampos, Alex
dc.contributor.authorMauro, Primiano Di
dc.contributor.authorBorrós, Salvador
dc.contributor.authorReventós Puigjaner, Jaume
dc.contributor.authorDoll, Andreas
dc.contributor.authorPaciucci Barzanti, Rosanna
dc.contributor.authorPegtel, D. Michiel
dc.contributor.authorTorres, Inés de
dc.contributor.authorSabidó Aguadé, Eduard
dc.contributor.authorMorote, Juan
dc.contributor.authorOlivan Riera, Mireia
dc.date.accessioned2020-07-06T12:00:10Z
dc.date.available2020-07-06T12:00:10Z
dc.date.issued2017-01-17
dc.date.updated2020-07-06T12:00:10Z
dc.description.abstractRapid and reliable diagnosis of prostate cancer (PCa) is highly desirable as current used methods lack specificity. In addition, identification of PCa biomarkers that can classify patients into high- and low-risk groups for disease progression at early stage will improve treatment decision-making. Here, we describe a set of protein-combination panels in urinary extracellular vesicles (EVs), defined by targeted proteomics and immunoblotting techniques that improve early non-invasive detection and stratification of PCa patients.We report a two-protein combination in urinary EVs that classifies benign and PCa patients (ADSV-TGM4), and a combination of five proteins able to significantly distinguish between high- and low-grade PCa patients (CD63-GLPK5-SPHM-PSA-PAPP). Proteins composing the panels were validated by immunohistochemistry assays in tissue microarrays (TMAs) confirming a strong link between the urinary EVs proteome and alterations in PCa tissues. Moreover, ADSV and TGM4 abundance yielded a high diagnostic potential in tissue and promising TGM4 prognostic power. These results suggest that the proteins identified in urinary EVs distinguishing high- and low grade PCa are a reflection of histological changes that may be a consequence of their functional involvement in PCa development. In conclusion, our study resulted in the identification of protein-combination panels present in urinary EVs that exhibit high sensitivity and specificity for PCa detection and patient stratification. Moreover, our study highlights the potential of targeted proteomic approaches-such as selected reaction monitoring (SRM)-as diagnostic assay for liquid biopsies via urinary EVs to improve diagnosis and prognosis of suspected PCa patients.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec697751
dc.identifier.issn1949-2553
dc.identifier.pmid27903962
dc.identifier.urihttps://hdl.handle.net/2445/167785
dc.language.isoeng
dc.publisherImpact Journals
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.18632/oncotarget.13634
dc.relation.ispartofOncotarget, 2017, vol. 8, num. 3, p. 4960-4976
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/269285/EU//PROTBIOFLUID
dc.relation.urihttps://doi.org/10.18632/oncotarget.13634
dc.rightscc-by (c) Sequeiros, Tamara et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)
dc.subject.classificationIndicadors biològics
dc.subject.classificationOrina
dc.subject.classificationCàncer de pròstata
dc.subject.otherIndicators (Biology)
dc.subject.otherUrine
dc.subject.otherProstate cancer
dc.titleTargeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
697751.pdf
Mida:
4.78 MB
Format:
Adobe Portable Document Format