Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Joan Bagaria et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217380

Huge Reflection

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We study Structural Reflection beyond Vopěnka's Principle, at the level of almosthuge cardinals and higher, up to rank-into-rank embeddings. We identify and classify new large cardinal notions in that region that correspond to some form of what we call Exact Structural Reflection (ESR). Namely, given cardinals $\kappa<\lambda$ and a class $\mathcal{C}$ of structures of the same type, the corresponding instance of ESR asserts that for every structure $A$ in $\mathcal{C}$ of rank $\lambda$, there is a structure $B$ in $\mathcal{C}$ of rank $\kappa$ and an elementary embedding of $B$ into $A$. Inspired by the statement of Chang's Conjecture, we also introduce and study sequential forms of ESR, which, in the case of sequences of length $\omega$, turn out to be very strong. Indeed, when restricted to $\Pi_1$-definable classes of structures they follow from the existence of $I 1$-embeddings, while for more complicated classes of structures, e.g., $\Sigma_2$, they are not known to be consistent. Thus, these principles unveil a new class of large cardinals that go beyond I1-embeddings, yet they may not fall into Kunen's Inconsistency.

Citació

Citació

LÜCKE, Philipp, BAGARIA, Joan. Huge Reflection. _Annals of Pure and Applied Logic_. 2023. Vol. 174, núm. 1. [consulta: 24 de gener de 2026]. ISSN: 0168-0072. [Disponible a: https://hdl.handle.net/2445/217380]

Exportar metadades

JSON - METS

Compartir registre