Huge Reflection

dc.contributor.authorLücke, Philipp
dc.contributor.authorBagaria, Joan
dc.date.accessioned2025-01-13T08:29:51Z
dc.date.available2025-01-13T08:29:51Z
dc.date.issued2023-01
dc.date.updated2025-01-13T08:29:51Z
dc.description.abstractWe study Structural Reflection beyond Vopěnka's Principle, at the level of almosthuge cardinals and higher, up to rank-into-rank embeddings. We identify and classify new large cardinal notions in that region that correspond to some form of what we call Exact Structural Reflection (ESR). Namely, given cardinals $\kappa<\lambda$ and a class $\mathcal{C}$ of structures of the same type, the corresponding instance of ESR asserts that for every structure $A$ in $\mathcal{C}$ of rank $\lambda$, there is a structure $B$ in $\mathcal{C}$ of rank $\kappa$ and an elementary embedding of $B$ into $A$. Inspired by the statement of Chang's Conjecture, we also introduce and study sequential forms of ESR, which, in the case of sequences of length $\omega$, turn out to be very strong. Indeed, when restricted to $\Pi_1$-definable classes of structures they follow from the existence of $I 1$-embeddings, while for more complicated classes of structures, e.g., $\Sigma_2$, they are not known to be consistent. Thus, these principles unveil a new class of large cardinals that go beyond I1-embeddings, yet they may not fall into Kunen's Inconsistency.
dc.format.extent32 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec744330
dc.identifier.issn0168-0072
dc.identifier.urihttps://hdl.handle.net/2445/217380
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.apal.2022.103171
dc.relation.ispartofAnnals of Pure and Applied Logic, 2023, vol. 174, num.1
dc.relation.urihttps://doi.org/10.1016/j.apal.2022.103171
dc.rightscc by (c) Joan Bagaria et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationNombres cardinals
dc.subject.classificationTeoria de conjunts
dc.subject.classificationCategories (Matemàtica)
dc.subject.otherCardinal numbers
dc.subject.otherSet theory
dc.subject.otherCategories (Mathematics)
dc.titleHuge Reflection
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
847280.pdf
Mida:
700.92 KB
Format:
Adobe Portable Document Format