A New Pipeline for the Normalization and Pooling of Metabolomics Data

dc.contributor.authorViallon, Vivian
dc.contributor.authorHis, Mathilde
dc.contributor.authorRinaldi, Sabina
dc.contributor.authorBreeur, Marie
dc.contributor.authorGicquiau, Audrey
dc.contributor.authorHemon, Bertrand
dc.contributor.authorOvervad, Kim
dc.contributor.authorTjønneland, Anne
dc.contributor.authorRostgaard-Hansen, Agnetha Linn
dc.contributor.authorRothwell, Joseph A.
dc.contributor.authorLecuyer, Lucie
dc.contributor.authorSeveri, Gianluca
dc.contributor.authorKaaks, Rudolf
dc.contributor.authorJohnson, Theron
dc.contributor.authorSchulze, Matthias B.
dc.contributor.authorPalli, Domenico
dc.contributor.authorAgnoli, Claudia
dc.contributor.authorPanico, Salvatore
dc.contributor.authorTumino, Rosario
dc.contributor.authorRicceri, Fulvio
dc.contributor.authorVerschuren, W. M. Monique
dc.contributor.authorEngelfriet, Peter
dc.contributor.authorOnland-Moret, N. Charlotte
dc.contributor.authorVermeulen, Roel
dc.contributor.authorNøst, Therese Haugdahl
dc.contributor.authorUrbarova, Ilona
dc.contributor.authorZamora-Ros, Raul
dc.contributor.authorRodriguez Barranco, Miguel
dc.contributor.authorAmiano, Pilar
dc.contributor.authorHuerta, José María
dc.contributor.authorArdanaz, Eva
dc.contributor.authorMelander, Olle
dc.contributor.authorOttoson, Filip
dc.contributor.authorVidman, Linda
dc.contributor.authorRentoft, Matilda
dc.contributor.authorSchmidt, Julie A.
dc.contributor.authorTravis, Ruth C.
dc.contributor.authorWeiderpass, Elisabete
dc.contributor.authorJohansson, Mattias
dc.contributor.authorDossus, Laure
dc.contributor.authorJenab, Mazda
dc.contributor.authorGunter, Marc J.
dc.contributor.authorLorenzo Bermejo, Justo
dc.contributor.authorScherer, Dominique
dc.contributor.authorSalek, Reza M.
dc.contributor.authorKeski-Rahkonen, Pekka
dc.contributor.authorFerrari, Pietro
dc.date.accessioned2021-10-11T11:11:21Z
dc.date.available2021-10-11T11:11:21Z
dc.date.issued2021-09-17
dc.date.updated2021-10-07T08:53:47Z
dc.description.abstractPooling metabolomics data across studies is often desirable to increase the statistical power of the analysis. However, this can raise methodological challenges as several preanalytical and analytical factors could introduce differences in measured concentrations and variability between datasets. Specifically, different studies may use variable sample types (e.g., serum versus plasma) collected, treated, and stored according to different protocols, and assayed in different laboratories using different instruments. To address these issues, a new pipeline was developed to normalize and pool metabolomics data through a set of sequential steps: (i) exclusions of the least informative observations and metabolites and removal of outliers; imputation of missing data; (ii) identification of the main sources of variability through principal component partial R-square (PC-PR2) analysis; (iii) application of linear mixed models to remove unwanted variability, including samples' originating study and batch, and preserve biological variations while accounting for potential differences in the residual variances across studies. This pipeline was applied to targeted metabolomics data acquired using Biocrates AbsoluteIDQ kits in eight case-control studies nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Comprehensive examination of metabolomics measurements indicated that the pipeline improved the comparability of data across the studies. Our pipeline can be adapted to normalize other molecular data, including biomarkers as well as proteomics data, and could be used for pooling molecular datasets, for example in international consortia, to limit biases introduced by inter-study variability. This versatility of the pipeline makes our work of potential interest to molecular epidemiologists.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2218-1989
dc.identifier.pmid34564446
dc.identifier.urihttps://hdl.handle.net/2445/180519
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/metabo11090631
dc.relation.ispartofMetabolites, 2021, vol. 11, num. 9, p. 631
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/313010/EU//BBMRI-LPC
dc.relation.urihttps://doi.org/10.3390/metabo11090631
dc.rightscc by (c) Viallon, Vivian et al, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationMetabolòmica
dc.subject.classificationCàncer
dc.subject.otherMetabolites
dc.subject.otherCancer
dc.titleA New Pipeline for the Normalization and Pooling of Metabolomics Data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
metabolites-11-00631.pdf
Mida:
3.06 MB
Format:
Adobe Portable Document Format