Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-by-nc-sa (c) Vitaliy Konovalov, 2013
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/47887

Detección automática de manos con caminos geodésicos en datos multi-modales

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In the last years, with the appearance of the multi-modal RGB-Depth information provided by the low cost KinectTM sensor, new ways of solving Computer Vision challenges have come and new strategies have been proposed. In this work the main problem is automatic hand detection in multi-modal RGB-Depth visual data. This task involves several difficulties due to the changes in illumination, viewport variations and articulated nature of the human body as well as its high flexibility. In order to solve it the present work proposes an accurate and efficient method based on hypothesis that the hand landmarks remain at a nearly constant geodesic distance from automatically located anatomical reference point. In a given frame, the human body is segmented first in the depth image. Then, a graph representation of the body is built in which the geodesic paths are computed from the reference point. The dense optical flow vectors on the corresponding RGB image are used to reduce ambiguities of the geodesic paths’ connectivity, allowing to eliminate false edges interconnecting different body parts. Finally, as the result, exact coordinates of both hands are obtained without involving costly learning procedures.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any:2013, Director: Sergio Escalera Guerrero i Albert Clapés Sintes

Citació

Citació

KONOVALOV, Vitaliy. Detección automática de manos con caminos geodésicos en datos multi-modales. [consulta: 7 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/47887]

Exportar metadades

JSON - METS

Compartir registre