Detección automática de manos con caminos geodésicos en datos multi-modales

dc.contributor.advisorEscalera Guerrero, Sergio
dc.contributor.advisorClapés i Sintes, Albert
dc.contributor.authorKonovalov, Vitaliy
dc.date.accessioned2013-11-19T09:55:59Z
dc.date.available2013-11-19T09:55:59Z
dc.date.issued2013-06-19
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any:2013, Director: Sergio Escalera Guerrero i Albert Clapés Sintesca
dc.description.abstractIn the last years, with the appearance of the multi-modal RGB-Depth information provided by the low cost KinectTM sensor, new ways of solving Computer Vision challenges have come and new strategies have been proposed. In this work the main problem is automatic hand detection in multi-modal RGB-Depth visual data. This task involves several difficulties due to the changes in illumination, viewport variations and articulated nature of the human body as well as its high flexibility. In order to solve it the present work proposes an accurate and efficient method based on hypothesis that the hand landmarks remain at a nearly constant geodesic distance from automatically located anatomical reference point. In a given frame, the human body is segmented first in the depth image. Then, a graph representation of the body is built in which the geodesic paths are computed from the reference point. The dense optical flow vectors on the corresponding RGB image are used to reduce ambiguities of the geodesic paths’ connectivity, allowing to eliminate false edges interconnecting different body parts. Finally, as the result, exact coordinates of both hands are obtained without involving costly learning procedures.ca
dc.format.extent75 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/47887
dc.language.isospaca
dc.rightsmemòria: cc-by-nc-sa (c) Vitaliy Konovalov, 2013
dc.rightscodi: GPL (c) Vitaliy Konovalov, 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationVisió per ordinadorcat
dc.subject.classificationReconeixement de formes (Informàtica)cat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherComputer visioneng
dc.subject.otherPattern recognition systemseng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.titleDetección automática de manos con caminos geodésicos en datos multi-modalesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
4.51 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
src.zip
Mida:
36.91 KB
Format:
ZIP file
Descripció:
Codi font