Enhancing the top-quark signal at Fermilab Tevatron using neural nets

dc.contributor.authorAmetller, Ll.cat
dc.contributor.authorGarrido Beltrán, Lluíscat
dc.contributor.authorTalavera Sánchez, Pedrocat
dc.date.accessioned2010-05-06T10:54:35Z
dc.date.available2010-05-06T10:54:35Z
dc.date.issued1994cat
dc.description.abstractWe show, in agreement with previous studies, that neural nets can be useful for top-quark analysis at the Fermilab Tevatron. The main features of tt¯ and background events in a mixed sample are projected on a single output, which controls the efficiency, purity, and statistical significance of the tt¯ signal. We consider a feed-forward multilayer neural net for the CDF reported top-quark mass, using six kinematical variables as inputs. Our main results are based on the exhaustive comparison of the neural net performances with those obtainable from the standard experimental analysis, by imposing different sets of linear cuts over the same variables, showing how the neural net approach improves the standard analysis results.
dc.format.extent6 p.cat
dc.format.mimetypeapplication/pdfeng
dc.identifier.idgrec137386cat
dc.identifier.issn0556-2821cat
dc.identifier.urihttps://hdl.handle.net/2445/12428
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevD.50.R5473cat
dc.relation.ispartofPhysical Review D, 1994, vol. 50, núm. 9, p. R5473-R5477cat
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevD.50.R5473
dc.rights(c) The American Physical Society, 1994eng
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationPartícules (Física nuclear)cat
dc.subject.classificationFísica matemàticacat
dc.subject.otherParticles (Nuclear physics)eng
dc.subject.otherMathematical physicseng
dc.titleEnhancing the top-quark signal at Fermilab Tevatron using neural netseng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
137386.pdf
Mida:
980.99 KB
Format:
Adobe Portable Document Format