Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-nc-nd (c) Iván Canales Martín, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188851

Medical image segmentation with limited data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Ischemic Heart Disease (IHD) is one of the leading causes of mortality in Spain; early diagnosis is key. Intravenous ultrasound imaging (IVUS) can help identify symptoms of IHD, at the cost of segmenting a large volume of frames by medical professionals. While promising, automated image segmentation using Convolutional Neural Networks (CNN) suffer from sample scarcity: a large amount of parameters is often used, and medical imaging datasets are typically small and costly to acquire and label. In this report we study and compare state of the art methods used to deal with sample scarcity. In particular we introduce data augmentation methodologies, specialized training losses and transfer learning methods, and compare their performance on IVUS segmentation of the media and lumen or the artery. Additionally we introduce a promising paradigm, few-shot segmentation, and provide an initial implementation using PFENet. This implementation can avoid significant overfitting, even when trained with a single example, outperforming traditional CNNs on the same segmentation problem.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Simone Balocco

Citació

Citació

CANALES MARTÍN, Iván. Medical image segmentation with limited data. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/188851]

Exportar metadades

JSON - METS

Compartir registre