Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188851
Medical image segmentation with limited data
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Ischemic Heart Disease (IHD) is one of the leading causes of mortality in Spain; early diagnosis is key. Intravenous ultrasound imaging (IVUS) can help identify symptoms of IHD, at the cost of segmenting a large volume of frames by medical professionals. While promising, automated image segmentation using Convolutional Neural Networks (CNN) suffer from sample scarcity: a large amount of parameters is often used, and medical imaging datasets are typically small and costly to acquire and label. In this report we study and compare state of the art methods used to deal with sample scarcity. In particular we introduce data augmentation methodologies, specialized training losses and transfer learning methods, and compare their performance on IVUS segmentation of the media and lumen or the artery. Additionally we introduce a promising paradigm, few-shot segmentation, and provide an initial implementation using PFENet. This implementation can avoid significant overfitting, even when trained with a single example, outperforming traditional CNNs on the same segmentation problem.
Descripció
Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Simone Balocco
Citació
Citació
CANALES MARTÍN, Iván. Medical image segmentation with limited data. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/188851]