Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Fai Po, H. et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/218458

Inferring structure of cortical neuronal networks from activity data: A statistical physics approach

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process. We devise a probabilistic method for inferring the effective network structure by integrating techniques from Bayesian statistics, statistical physics, and principled machine learning. The method and resulting algorithm allow one to infer the effective network structure, identify the excitatory and inhibitory type of its constituents, and predict neuronal spiking activity by employing the inferred structure. We validate the method and algorithm’s performance using synthetic data, spontaneous activity of an in silico emulator, and realistic in vitro neuronal networks of modular and homogeneous connectivity, demonstrating excellent structure inference and activity prediction. We also show that our method outperforms commonly used existing methods for inferring neuronal network structure. Inferring the evolving effective structure of neuronal networks will provide new insight into the learning process due to stimulation in general and will facilitate the development of neuron-based circuits with computing capabilities.

Matèries (anglès)

Citació

Citació

FAI PO, H., HOUBEN, Akke mats, HAEB, Anna-christina, JENKINS, D.r., HILL, E.j., PARRI, H.r, SORIANO I FRADERA, Jordi, SAAD, D.. Inferring structure of cortical neuronal networks from activity data: A statistical physics approach. _PNAS Nexus_. 2025. Vol. 4, núm. num1, pàgs. pgae565. [consulta: 6 de febrer de 2026]. ISSN: 2752-6542. [Disponible a: https://hdl.handle.net/2445/218458]

Exportar metadades

JSON - METS

Compartir registre