Inferring structure of cortical neuronal networks from activity data: A statistical physics approach

dc.contributor.authorFai Po, H.
dc.contributor.authorHouben, Akke Mats
dc.contributor.authorHaeb, Anna-Christina
dc.contributor.authorJenkins, D.R.
dc.contributor.authorHill, E.J.
dc.contributor.authorParri, H.R
dc.contributor.authorSoriano i Fradera, Jordi
dc.contributor.authorSaad, D.
dc.date.accessioned2025-02-03T16:24:51Z
dc.date.available2025-02-03T16:24:51Z
dc.date.issued2025-01-09
dc.date.updated2025-02-03T16:24:51Z
dc.description.abstractUnderstanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process. We devise a probabilistic method for inferring the effective network structure by integrating techniques from Bayesian statistics, statistical physics, and principled machine learning. The method and resulting algorithm allow one to infer the effective network structure, identify the excitatory and inhibitory type of its constituents, and predict neuronal spiking activity by employing the inferred structure. We validate the method and algorithm’s performance using synthetic data, spontaneous activity of an in silico emulator, and realistic in vitro neuronal networks of modular and homogeneous connectivity, demonstrating excellent structure inference and activity prediction. We also show that our method outperforms commonly used existing methods for inferring neuronal network structure. Inferring the evolving effective structure of neuronal networks will provide new insight into the learning process due to stimulation in general and will facilitate the development of neuron-based circuits with computing capabilities.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec753644
dc.identifier.issn2752-6542
dc.identifier.pmid39790102
dc.identifier.urihttps://hdl.handle.net/2445/218458
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/pnasnexus/pgae565
dc.relation.ispartofPNAS Nexus, 2025, vol. 4, num1, pgae565
dc.relation.urihttps://doi.org/10.1093/pnasnexus/pgae565
dc.rightscc-by (c) Fai Po, H. et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationModel d'Ising
dc.subject.classificationNeurociències
dc.subject.otherIsing model
dc.subject.otherNeurosciences
dc.titleInferring structure of cortical neuronal networks from activity data: A statistical physics approach
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
876519.pdf
Mida:
6.18 MB
Format:
Adobe Portable Document Format