Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Ontiveros Cruz, Diego et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/225134

MXgap: A MXene Learning Tool for Bandgap Prediction

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The increasing demand for clean and renewable energy has intensified the exploration of advanced materials for efficient photocatalysis, particularly for water splitting applications. Among these materials, MXenes, a family of two-dimensional (2D) transition metal carbides and nitrides, have shown great promise. This study leverages machine learning (ML) to address the resource-intensive process of predicting the bandgap of MXenes, which is critical for their photocatalytic performance. Using an extensive data set of 4356 MXene structures, we trained multiple ML models and developed a robust classifier-regressor pipeline that achieves a classification accuracy of 92% and a mean absolute error (MAE) of 0.17 eV for bandgap prediction. This framework, implemented in an open-source Python package, MXgap, has been applied to screen 396 La-based MXenes, identifying six promising candidates with suitable band alignments for water splitting whose optical properties were further explored via optical absorption and solar to-hydrogen (STH) efficiency. These findings demonstrate the potential of ML to accelerate MXene discovery and optimization for energy applications.

Citació

Citació

ONTIVEROS CRUZ, Diego, VELA LLAUSÍ, Sergi, VIÑES SOLANA, Francesc, SOUSA ROMERO, Carmen. MXgap: A MXene Learning Tool for Bandgap Prediction. _ACS Catalysis_. 2025. Vol. 15, núm. 14403-14413. [consulta: 26 de gener de 2026]. ISSN: 2155-5435. [Disponible a: https://hdl.handle.net/2445/225134]

Exportar metadades

JSON - METS

Compartir registre