MXgap: A MXene Learning Tool for Bandgap Prediction
| dc.contributor.author | Ontiveros Cruz, Diego | |
| dc.contributor.author | Vela Llausí, Sergi | |
| dc.contributor.author | Viñes Solana, Francesc | |
| dc.contributor.author | Sousa Romero, Carmen | |
| dc.date.accessioned | 2026-01-07T16:40:50Z | |
| dc.date.available | 2026-01-07T16:40:50Z | |
| dc.date.issued | 2025-08-05 | |
| dc.date.updated | 2026-01-07T16:40:50Z | |
| dc.description.abstract | The increasing demand for clean and renewable energy has intensified the exploration of advanced materials for efficient photocatalysis, particularly for water splitting applications. Among these materials, MXenes, a family of two-dimensional (2D) transition metal carbides and nitrides, have shown great promise. This study leverages machine learning (ML) to address the resource-intensive process of predicting the bandgap of MXenes, which is critical for their photocatalytic performance. Using an extensive data set of 4356 MXene structures, we trained multiple ML models and developed a robust classifier-regressor pipeline that achieves a classification accuracy of 92% and a mean absolute error (MAE) of 0.17 eV for bandgap prediction. This framework, implemented in an open-source Python package, MXgap, has been applied to screen 396 La-based MXenes, identifying six promising candidates with suitable band alignments for water splitting whose optical properties were further explored via optical absorption and solar to-hydrogen (STH) efficiency. These findings demonstrate the potential of ML to accelerate MXene discovery and optimization for energy applications. | |
| dc.format.extent | 11 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 761428 | |
| dc.identifier.issn | 2155-5435 | |
| dc.identifier.uri | https://hdl.handle.net/2445/225134 | |
| dc.language.iso | eng | |
| dc.publisher | American Chemical Society | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1021/acscatal.5c04191 | |
| dc.relation.ispartof | ACS Catalysis, 2025, vol. 15, p. 14403-14413 | |
| dc.relation.uri | https://doi.org/10.1021/acscatal.5c04191 | |
| dc.rights | cc-by (c) Ontiveros Cruz, Diego et al., 2025 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.classification | MXens | |
| dc.subject.classification | Aprenentatge automàtic | |
| dc.subject.classification | Teoria del funcional de densitat | |
| dc.subject.classification | Fotocatàlisi | |
| dc.subject.other | MXenes | |
| dc.subject.other | Machine learning | |
| dc.subject.other | Density functionals | |
| dc.subject.other | Photocatalysis | |
| dc.title | MXgap: A MXene Learning Tool for Bandgap Prediction | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1