MXgap: A MXene Learning Tool for Bandgap Prediction

dc.contributor.authorOntiveros Cruz, Diego
dc.contributor.authorVela Llausí, Sergi
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorSousa Romero, Carmen
dc.date.accessioned2026-01-07T16:40:50Z
dc.date.available2026-01-07T16:40:50Z
dc.date.issued2025-08-05
dc.date.updated2026-01-07T16:40:50Z
dc.description.abstractThe increasing demand for clean and renewable energy has intensified the exploration of advanced materials for efficient photocatalysis, particularly for water splitting applications. Among these materials, MXenes, a family of two-dimensional (2D) transition metal carbides and nitrides, have shown great promise. This study leverages machine learning (ML) to address the resource-intensive process of predicting the bandgap of MXenes, which is critical for their photocatalytic performance. Using an extensive data set of 4356 MXene structures, we trained multiple ML models and developed a robust classifier-regressor pipeline that achieves a classification accuracy of 92% and a mean absolute error (MAE) of 0.17 eV for bandgap prediction. This framework, implemented in an open-source Python package, MXgap, has been applied to screen 396 La-based MXenes, identifying six promising candidates with suitable band alignments for water splitting whose optical properties were further explored via optical absorption and solar to-hydrogen (STH) efficiency. These findings demonstrate the potential of ML to accelerate MXene discovery and optimization for energy applications.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec761428
dc.identifier.issn2155-5435
dc.identifier.urihttps://hdl.handle.net/2445/225134
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acscatal.5c04191
dc.relation.ispartofACS Catalysis, 2025, vol. 15, p. 14403-14413
dc.relation.urihttps://doi.org/10.1021/acscatal.5c04191
dc.rightscc-by (c) Ontiveros Cruz, Diego et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.classificationMXens
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTeoria del funcional de densitat
dc.subject.classificationFotocatàlisi
dc.subject.otherMXenes
dc.subject.otherMachine learning
dc.subject.otherDensity functionals
dc.subject.otherPhotocatalysis
dc.titleMXgap: A MXene Learning Tool for Bandgap Prediction
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
903169.pdf
Mida:
4.46 MB
Format:
Adobe Portable Document Format