Nuclear pore complex dysfunction drives TDP-43 pathology in ALS

dc.contributor.authorRamírez Núñez, Omar
dc.contributor.authorRico-Rios, Santiago
dc.contributor.authorTorres, Pascual
dc.contributor.authorAyala, Victòria
dc.contributor.authorFernández-Bernal, Anna
dc.contributor.authorCeron-Codorniu, Miriam
dc.contributor.authorAndrés-Benito, Pol
dc.contributor.authorVinyals, A.
dc.contributor.authorMaqsood, S.
dc.contributor.authorFerrer, Isidro
dc.contributor.authorPamplona, Reinald
dc.contributor.authorPortero-Otin, Manuel
dc.date.accessioned2025-10-16T07:09:18Z
dc.date.available2025-10-16T07:09:18Z
dc.date.issued2025-08-15
dc.date.updated2025-10-15T11:15:50Z
dc.description.abstractAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components-is a consistent finding across ALS postmortem spinal cord, SOD1<^>G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2213-2317
dc.identifier.pmid40819564
dc.identifier.urihttps://hdl.handle.net/2445/223689
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.redox.2025.103824
dc.relation.ispartofRedox Biology, 2025, vol. 86, 103824
dc.relation.urihttps://doi.org/10.1016/j.redox.2025.103824
dc.rightscc-by (c) Ramírez Núñez, Omar et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationPatologia cel·lular
dc.subject.classificationMalalties neurodegeneratives
dc.subject.classificationEsclerosi lateral amiotròfica
dc.subject.otherCellular pathology
dc.subject.otherNeurodegenerative Diseases
dc.subject.otherAmyotrophic lateral sclerosis
dc.titleNuclear pore complex dysfunction drives TDP-43 pathology in ALS
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
1-s2.0-S2213231725003374-main.pdf
Mida:
12.2 MB
Format:
Adobe Portable Document Format