On the depth of the tangent cone and the growth of the Hilbert function

dc.contributor.authorElías García, Joancat
dc.date.accessioned2009-04-16T08:42:10Z
dc.date.available2009-04-16T08:42:10Z
dc.date.issued1999cat
dc.description.abstractFor a d-dimensional Cohen-Macaulay local ring (R,m) we study the depth of the associated graded ring of R with respect to an m-primary ideal I in terms of the Vallabrega-Valla conditions and the length of It+1/JIt, where J is a J minimal reduction of I and t≥ 1. As a corollary we generalize Sally's conjecture on the depth of the associated graded ring with respect to a maximal ideal to m-primary ideals. We also study the growth of the Hilbert function.
dc.format.extent17 p.cat
dc.format.mimetypeapplication/pdfeng
dc.identifier.idgrec153816cat
dc.identifier.issn1088-6850cat
dc.identifier.urihttps://hdl.handle.net/2445/7766
dc.language.isoengeng
dc.publisherAmerican Mathematical Societycat
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per JSTOR http://www.jstor.org/stable/118037cat
dc.relation.ispartofTransactions of the American Mathematical Society, 1999, vol. 351, núm. 10, p. 4027-4042.cat
dc.rights(c) American Mathematical Society, 1999cat
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnells localscat
dc.subject.classificationIdeals (Àlgebra)cat
dc.subject.classificationHomologiacat
dc.subject.classificationFuncions característiquescat
dc.subject.classificationGeometria algebraicacat
dc.subject.otherAssociated graded rings of idealseng
dc.subject.otherHomological methodseng
dc.subject.otherHilbert-Samuel and Hilbert-Kunz functionseng
dc.subject.otherPoincaré serieseng
dc.subject.otherLocal rings and semilocal ringseng
dc.titleOn the depth of the tangent cone and the growth of the Hilbert functioneng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
153816.pdf
Mida:
1.36 MB
Format:
Adobe Portable Document Format