Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/191161
Study of different models for sentiment analysis and language representation
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] In this project we study three different models of artificial intelligence to carry out the process of sentiment analysis, which consists of determining the polarity of a text; that is, detecting whether it is positive, negative or neutral. The first model studied is a neural network, specifically a long short-term memory, which uses deep learning techniques. We delve deeper into the study of its structure and operation, unmasking all the mathematics behind it.
The other two models belong to machine learning: logistic regression and Naive Bayes. We emphasize the study of its parameters and optimization, with the intention to understand the learning process of each one.
Finally, we apply the results and techniques developed to implement a Python program with each model in order to detect the sentiment of thousands of reviews from social media of different bars and restaurants. We dedicate a whole chapter to give the results, the analysis of each one and a comparison between them.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Josep Vives i Santa Eulàlia i Jordi Vitrià i Marca
Citació
Col·leccions
Citació
LÓPEZ RAICH, Núria. Study of different models for sentiment analysis and language representation. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/191161]