Quantification of transcript isoforms at the single-cell level using SCALPEL
| dc.contributor.author | Ake, Franz | |
| dc.contributor.author | Schilling, Marcel | |
| dc.contributor.author | Fernandez Moya, Sandra M. | |
| dc.contributor.author | Jaya Ganesh, Akshay | |
| dc.contributor.author | Gutiérrez Franco, Ana | |
| dc.contributor.author | Li, Lei | |
| dc.contributor.author | Plass, Mireya | |
| dc.date.accessioned | 2025-08-28T08:46:57Z | |
| dc.date.available | 2025-08-28T08:46:57Z | |
| dc.date.issued | 2025-12-01 | |
| dc.date.updated | 2025-08-28T08:46:57Z | |
| dc.description.abstract | Single-cell RNA sequencing (scRNA-seq) facilitates the study of transcriptome diversity in individual cells. Yet, many existing methods lack sensitivity and accuracy. Here we introduce SCALPEL, a Nextflow-based tool to quantify and characterize transcript isoforms from standard 3' scRNA-seq data. Using synthetic data, SCALPEL demonstrates higher sensitivity and specificity compared to other tools. In real datasets, SCALPEL predictions have a high agreement with other tools and can be experimentally validated. The use of SCALPEL on real datasets reveals novel cell populations undetectable using single-cell gene expression data, confirms known 3' UTR length changes during cell differentiation, and identifies cell-type specific miRNA signatures regulating isoform expression. Additionally, we show that SCALPEL improves isoform quantification using paired long- and short-read scRNA-seq data. Overall, SCALPEL expands the current scRNA-seq toolkit to explore post-transcriptional gene regulation across species, tissues, and technologies, advancing our understanding of gene regulatory mechanisms at the single-cell level. | |
| dc.format.extent | 17 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 759721 | |
| dc.identifier.issn | 2041-1723 | |
| dc.identifier.pmid | 40640129 | |
| dc.identifier.uri | https://hdl.handle.net/2445/222802 | |
| dc.language.iso | eng | |
| dc.publisher | Nature Publishing Group | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1038/s41467-025-61118-0 | |
| dc.relation.ispartof | Nature Communications, 2025, vol. 16, num.1 | |
| dc.relation.uri | https://doi.org/10.1038/s41467-025-61118-0 | |
| dc.rights | cc-by-nc-nd (c) Ake, F. et al., 2025 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Ciències Fisiològiques) | |
| dc.subject.classification | Expressió gènica | |
| dc.subject.classification | Micro RNAs | |
| dc.subject.classification | Animals | |
| dc.subject.classification | Ratolins (Animals de laboratori) | |
| dc.subject.other | Gene expression | |
| dc.subject.other | MicroRNAs | |
| dc.subject.other | Animals | |
| dc.subject.other | Mice (Laboratory animals) | |
| dc.title | Quantification of transcript isoforms at the single-cell level using SCALPEL | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1