Carregant...
Fitxers
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/114903
The Kepler conjecture
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Kepler’s conjecture asserts that the highest possible density an arrangement of congruent balls can have is the one of the face-centered cubic packing. That is, the pyramid arrangement of balls on a square base, or on a triangular base, like oranges are usually arranged at fruit stands. In this project, we study the proof
of this problem presented by Thomas Hales in 1998.
It will be obvious that in some parts (specially in the end) we do not go into detail when we study the properties of the elements that take place in the proof. The reason is that the notation gets very cumbersome as we go along and the study of these details will not give us a better understanding of the proof. They are necessary steps to prove the conjecture, but our aim is to understand the proof as a whole and to see what strategy Thomas Hales followed. It is also important to note that a big part of the proof relies in computer calculations. All the programs and algorithms can be found online on the documentation of the Flyspeck project. It took years to finish and verify this part of the proof (the project was finally completed on August 2014) and we will not study this part of the proof.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Juan Carlos Naranjo del Val
Matèries
Matèries (anglès)
Citació
Col·leccions
Citació
VARAS VILA, Núria. The Kepler conjecture. [consulta: 22 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/114903]