Autoencoders

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorPlanasdemunt Cobo, Eduard
dc.date.accessioned2023-06-12T07:04:25Z
dc.date.available2023-06-12T07:04:25Z
dc.date.issued2023-01-24
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Josep Fortiana Gregorica
dc.description.abstract[en] In this project we study antoencoders, a machine learning tecnique used for dimensionality reduction of databases, analizing images or generating new data. We compare them with tradicional dimensionality reduction method, the principal component analysis (PCA). Even though in some fields (specially with small databases) PCA is useful we show that autoencoders can accomplish the same tasks with better results and even accomplish new ones unattainable with PCA. We prepared programs in Python implementing several versions of autoencoders, applied frequently used databases, comparing results with those obtained with PCA, when applicable.ca
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/199060
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Eduard Planasdemunt Cobo, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationEstadística matemàticaca
dc.subject.classificationAnàlisi multivariableca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationVisió per ordinadorca
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's theses
dc.subject.otherMathematical statisticsen
dc.subject.otherMultivariate analysisen
dc.subject.otherMachine learningen
dc.subject.otherComputer visionen
dc.titleAutoencodersca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_planasdemunt_cobo_eduard.pdf
Mida:
1.87 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria