Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Hernández González, Jerónimo et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/172863

A Robust Solution to Variational Importance Sampling of Minimum Variance

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Importance sampling is a Monte Carlo method where samples are obtained from an alternative proposal distribution. This can be used to focus the sampling process in the relevant parts of space, thus reducing the variance. Selecting the proposal that leads to the minimum variance can be formulated as an optimization problem and solved, for instance, by the use of a variational approach. Variational inference selects, from a given family, the distribution which minimizes the divergence to the distribution of interest. The Rényi projection of order 2 leads to the importance sampling estimator of minimum variance, but its computation is very costly. In this study with discrete distributions that factorize over probabilistic graphical models, we propose and evaluate an approximate projection method onto fully factored distributions. As a result of our evaluation it becomes apparent that a proposal distribution mixing the information projection with the approximate Rényi projection of order 2 could be interesting from a practical perspective.

Citació

Citació

HERNÁNDEZ-GONZÁLEZ, Jerónimo, CERQUIDES BUENO, Jesús. A Robust Solution to Variational Importance Sampling of Minimum Variance. _Entropy_. 2020. Vol. 22, núm. 12, pàgs. 1405. [consulta: 24 de gener de 2026]. ISSN: 1099-4300. [Disponible a: https://hdl.handle.net/2445/172863]

Exportar metadades

JSON - METS

Compartir registre