A Robust Solution to Variational Importance Sampling of Minimum Variance

dc.contributor.authorHernández-González, Jerónimo
dc.contributor.authorCerquides Bueno, Jesús
dc.date.accessioned2020-12-21T09:18:30Z
dc.date.available2020-12-21T09:18:30Z
dc.date.issued2020-12-12
dc.date.updated2020-12-21T09:18:30Z
dc.description.abstractImportance sampling is a Monte Carlo method where samples are obtained from an alternative proposal distribution. This can be used to focus the sampling process in the relevant parts of space, thus reducing the variance. Selecting the proposal that leads to the minimum variance can be formulated as an optimization problem and solved, for instance, by the use of a variational approach. Variational inference selects, from a given family, the distribution which minimizes the divergence to the distribution of interest. The Rényi projection of order 2 leads to the importance sampling estimator of minimum variance, but its computation is very costly. In this study with discrete distributions that factorize over probabilistic graphical models, we propose and evaluate an approximate projection method onto fully factored distributions. As a result of our evaluation it becomes apparent that a proposal distribution mixing the information projection with the approximate Rényi projection of order 2 could be interesting from a practical perspective.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec705268
dc.identifier.issn1099-4300
dc.identifier.pmid33322766
dc.identifier.urihttps://hdl.handle.net/2445/172863
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/e22121405
dc.relation.ispartofEntropy, 2020, vol. 22, num. 12, p. 1405
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/952026/EU//HumanE-AI-Net
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/872944/EU//CROWD4SDG
dc.relation.urihttps://doi.org/10.3390/e22121405
dc.rightscc-by (c) Hernández González, Jerónimo et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationMètode de Montecarlo
dc.subject.classificationEstadística bayesiana
dc.subject.classificationDistribució (Teoria de la probabilitat)
dc.subject.classificationFactorització (Matemàtica)
dc.subject.classificationAlgorismes computacionals
dc.subject.otherMonte Carlo method
dc.subject.otherBayesian statistical decision
dc.subject.otherDistribution (Probability theory)
dc.subject.otherFactorization (Mathematics)
dc.subject.otherComputer algorithms
dc.titleA Robust Solution to Variational Importance Sampling of Minimum Variance
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
705268.pdf
Mida:
728.14 KB
Format:
Adobe Portable Document Format