Large conductance switching in a single-molecule device through room temperature spin-dependent transport

dc.contributor.authorAragonès, Albert C.
dc.contributor.authorAravena Ponce, Daniel Alejandro
dc.contributor.authorCerda, Jorge I.
dc.contributor.authorAcis-Castillo, Zulema
dc.contributor.authorLi, Haipeng
dc.contributor.authorReal, José Antonio
dc.contributor.authorSanz Carrasco, Fausto
dc.contributor.authorHihath, Josh
dc.contributor.authorRuiz Sabín, Eliseo
dc.contributor.authorDíez Pérez, Ismael
dc.date.accessioned2020-04-01T07:38:07Z
dc.date.available2020-04-01T07:38:07Z
dc.date.issued2016-01-01
dc.date.updated2020-04-01T07:38:08Z
dc.description.abstractControlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe-II complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an alpha-up or a beta-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec667517
dc.identifier.issn1530-6984
dc.identifier.urihttps://hdl.handle.net/2445/154617
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.nanolett.5b03571
dc.relation.ispartofNano Letters, 2016, vol. 16, num. 1, p. 218-226
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/277182/EU//SINGLE-BIOET
dc.relation.urihttps://doi.org/10.1021/acs.nanolett.5b03571
dc.rights(c) American Chemical Society , 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationFerro
dc.subject.classificationLligands
dc.subject.classificationTeoria del funcional de densitat
dc.subject.classificationNanotecnologia
dc.subject.otherIron
dc.subject.otherLigands
dc.subject.otherDensity functionals
dc.subject.otherNanotechnology
dc.titleLarge conductance switching in a single-molecule device through room temperature spin-dependent transport
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
667517.pdf
Mida:
9.19 MB
Format:
Adobe Portable Document Format