Morbid liver manifestations are intrinsically bound to metabolic syndrome and nutrient intake based on a machine-learning cluster analysis

dc.contributor.authorMicó, Víctor
dc.contributor.authorSan Cristobal, Rodrigo
dc.contributor.authorMartín, Roberto
dc.contributor.authorMartínez-González, Miguel Ángel, 1957-
dc.contributor.authorSalas Salvadó, Jordi
dc.contributor.authorCorella Piquer, Dolores
dc.contributor.authorFitó Colomer, Montserrat
dc.contributor.authorAlonso Gómez, Ángel M.
dc.contributor.authorWärnberg, Julia
dc.contributor.authorVioque, Jesús
dc.contributor.authorRomaguera, Dora
dc.contributor.authorLópez Miranda, José
dc.contributor.authorEstruch Riba, Ramon
dc.contributor.authorTinahones, Francisco J.
dc.contributor.authorLapetra, José
dc.contributor.authorSerra Majem, Lluís
dc.contributor.authorBueno Cavanillas, Aurora
dc.contributor.authorTur, Josep A.
dc.contributor.authorMartín Sánchez, Vicente
dc.contributor.authorPintó Sala, Xavier
dc.contributor.authorDelgado Rodríguez, Miguel
dc.contributor.authorMatía Martín, Pilar
dc.contributor.authorVidal i Cortada, Josep
dc.contributor.authorVázquez, Clotilde
dc.contributor.authorGarcía Arellano, Ana
dc.contributor.authorPertusa Martinez, Salvador
dc.contributor.authorChaplin, Alice
dc.contributor.authorGarcía Ríos, Antonio
dc.contributor.authorMuñoz Bravo, Carlos
dc.contributor.authorSchröder, Helmut, 1958-
dc.contributor.authorBabio, Nancy
dc.contributor.authorSorlí, José V.
dc.contributor.authorGonzalez, Jose I.
dc.contributor.authorMartinez Urbistondo, Diego
dc.contributor.authorToledo Atucha, Estefanía
dc.contributor.authorBullón, Vanessa
dc.contributor.authorRuiz Canela, Miguel
dc.contributor.authorPortillo, María Puy
dc.contributor.authorMacías González, Manuel
dc.contributor.authorPerez Diaz del Campo, Nuria
dc.contributor.authorGarcía Gavilán, Jesús
dc.contributor.authorDaimiel, Lidia
dc.contributor.authorMartínez, J. Alfredo, 1957-
dc.date.accessioned2022-12-23T08:37:11Z
dc.date.available2022-12-23T08:37:11Z
dc.date.issued2022-09-06
dc.date.updated2022-12-19T12:27:30Z
dc.description.abstractMetabolic syndrome (MetS) is one of the most important medical problems around the world. Identification of patient ' s singular characteristic could help to reduce the clinical impact and facilitate individualized management. This study aimed to categorize MetS patients using phenotypical and clinical variables habitually collected during health check-ups of individuals considered to have high cardiovascular risk. The selected markers to categorize MetS participants included anthropometric variables as well as clinical data, biochemical parameters and prescribed pharmacological treatment. An exploratory factor analysis was carried out with a subsequent hierarchical cluster analysis using the z-scores from factor analysis. The first step identified three different factors. The first was determined by hypercholesterolemia and associated treatments, the second factor exhibited glycemic disorders and accompanying treatments and the third factor was characterized by hepatic enzymes. Subsequently four clusters of patients were identified, where cluster 1 was characterized by glucose disorders and treatments, cluster 2 presented mild MetS, cluster 3 presented exacerbated levels of hepatic enzymes and cluster 4 highlighted cholesterol and its associated treatments Interestingly, the liver status related cluster was characterized by higher protein consumption and cluster 4 with low polyunsaturated fatty acid intake. This research emphasized the potential clinical relevance of hepatic impairments in addition to MetS traditional characterization for precision and personalized management of MetS patients.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina9330823
dc.identifier.issn1664-2392
dc.identifier.pmid36147576
dc.identifier.urihttps://hdl.handle.net/2445/191808
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fendo.2022.936956
dc.relation.ispartofFrontiers in Endocrinology, 2022, vol. 13
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/340918/EU//PREDIMED PLUS
dc.relation.urihttps://doi.org/10.3389/fendo.2022.936956
dc.rightscc by (c) Micó, Víctor et al ., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationMarcadors bioquímics
dc.subject.classificationSíndrome metabòlica
dc.subject.classificationAnàlisi de conglomerats
dc.subject.otherBiochemical markers
dc.subject.otherMetabolic syndrome
dc.subject.otherCluster analysis
dc.titleMorbid liver manifestations are intrinsically bound to metabolic syndrome and nutrient intake based on a machine-learning cluster analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
fendo-13-936956.pdf
Mida:
1.27 MB
Format:
Adobe Portable Document Format