Ein–Lazarsfeld–Mustopa conjecture for the blow-up of a projective space

dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)
dc.contributor.authorSalat Moltó, Martí
dc.date.accessioned2025-04-28T07:17:01Z
dc.date.available2025-04-28T07:17:01Z
dc.date.issued2023-01-18
dc.date.updated2025-04-28T07:17:01Z
dc.description.abstractWe solve the Ein-Lazarsfeld-Mustopa conjecture for the blow up of a projective space along a linear subspace. More precisely, let $X$ be the blow up of $\mathbb{P}^n$ at a linear subspace and let $L$ be any ample line bundle on $X$. We show that the syzygy bundle $M_L$ defined as the kernel of the evalution map $H^0(X, L) \otimes \mathcal{O}_X \rightarrow L$ is $L$-stable. In the last part of this note we focus on the rigidness of $M_L$ to study the local shape of the moduli space around the point $\left[M_L\right]$.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec743642
dc.identifier.issn0373-3114
dc.identifier.urihttps://hdl.handle.net/2445/220656
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s10231-023-01359-2
dc.relation.ispartofAnnali di Matematica Pura ed Applicata, 2023, vol. 203, num.1, p. 221-233
dc.relation.urihttps://doi.org/10.1007/s10231-023-01359-2
dc.rightscc by (c) Rosa M. Miró-Roig et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÀlgebra commutativa
dc.subject.classificationSuperfícies algebraiques
dc.subject.classificationGeometria algebraica
dc.subject.classificationVarietats algebraiques
dc.subject.otherCommutative algebra
dc.subject.otherAlgebraic surfaces
dc.subject.otherAlgebraic geometry
dc.subject.otherAlgebraic varieties
dc.titleEin–Lazarsfeld–Mustopa conjecture for the blow-up of a projective space
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
845292.pdf
Mida:
311.83 KB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: