Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220398
Machine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Microfluidics represents a very promising technological solution for conducting massive biological experiments. However, the difficulty of managing the amount of information available often precludes the wide potential offered. Using machine learning, we aim to accelerate microfluidics uptake and lead to quantitative and reliable findings. In this work, we propose complementing microfluidics with machine learning (MLM) approaches to enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis methodologies within the deep learning framework corroborates the possibility of encoding cell morphology beyond the standard cell appearance. The proposed MLM platform is used in a diagnostic test for blood diseases in murine RBC samples in a dedicated microfluidics device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is measured massively by recognizing the shape deformation in RBCs walking in a forest of pillars within the chip. Very high accuracy results, far over 85 %, in recognizing PKD from control RBCs either in simulated and in real experiments demonstrate the effectiveness of the platform.
Matèries (anglès)
Citació
Citació
MENCATTINI, Arianna, RIZZUTO, Valeria, ANTONELLI, Gianni, DI GIUSEPPE, Davide, D'ORAZIO, M., FILIPPI, Joanna, COMES, M.c., CASTI, Paola, VIVES CORRONS, Joan-lluis, GARCIA-BRAVO, María, SEGOVIA, J.c., MAÑÚ-PEREIRA, María del mar, LOPEZ-MARTINEZ, Maria j., SAMITIER I MARTÍ, Josep, MARTINELLI, Eugenio. Machine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring. _Sensors and Actuators A: Physical_. 2023. [consulta: 29 de gener de 2026]. ISSN: 0924-4247. [Disponible a: https://hdl.handle.net/2445/220398]