Machine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring

dc.contributor.authorMencattini, Arianna
dc.contributor.authorRizzuto, Valeria
dc.contributor.authorAntonelli, Gianni
dc.contributor.authorDi Giuseppe, Davide
dc.contributor.authorD'Orazio, M.
dc.contributor.authorFilippi, Joanna
dc.contributor.authorComes, M.C.
dc.contributor.authorCasti, Paola
dc.contributor.authorVives Corrons, Joan-Lluis
dc.contributor.authorGarcia-Bravo, María
dc.contributor.authorSegovia, J.C.
dc.contributor.authorMañú-Pereira, María del Mar
dc.contributor.authorLopez-Martinez, Maria J.
dc.contributor.authorSamitier i Martí, Josep
dc.contributor.authorMartinelli, Eugenio
dc.date.accessioned2025-04-10T16:06:24Z
dc.date.available2025-04-10T16:06:24Z
dc.date.issued2023-03-01
dc.date.updated2025-04-10T16:06:24Z
dc.description.abstractMicrofluidics represents a very promising technological solution for conducting massive biological experiments. However, the difficulty of managing the amount of information available often precludes the wide potential offered. Using machine learning, we aim to accelerate microfluidics uptake and lead to quantitative and reliable findings. In this work, we propose complementing microfluidics with machine learning (MLM) approaches to enhance the diagnostic capability of lab-on-chip devices. The introduction of data analysis methodologies within the deep learning framework corroborates the possibility of encoding cell morphology beyond the standard cell appearance. The proposed MLM platform is used in a diagnostic test for blood diseases in murine RBC samples in a dedicated microfluidics device in flow. The lack of plasticity of RBCs in Pyruvate Kinase Disease (PKD) is measured massively by recognizing the shape deformation in RBCs walking in a forest of pillars within the chip. Very high accuracy results, far over 85 %, in recognizing PKD from control RBCs either in simulated and in real experiments demonstrate the effectiveness of the platform.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec732168
dc.identifier.issn0924-4247
dc.identifier.urihttps://hdl.handle.net/2445/220398
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.sna.2023.114187
dc.relation.ispartofSensors and Actuators A: Physical, 2023
dc.relation.urihttps://doi.org/10.1016/j.sna.2023.114187
dc.rightscc-by-nc-nd (c) Elsevier, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationAprenentatge profund
dc.subject.classificationImmunitat cel·lular
dc.subject.classificationMicrofluídica
dc.subject.otherDeep learning (Machine learning)
dc.subject.otherCellular immunity
dc.subject.otherMicrofluidics
dc.titleMachine learning microfluidic based platform: Integration of Lab-on-Chip devices and data analysis algorithms for red blood cell plasticity evaluation in Pyruvate Kinase Disease monitoring
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
259154.pdf
Mida:
2.52 MB
Format:
Adobe Portable Document Format