Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools

dc.contributor.authorDíaz, Oliver
dc.contributor.authorKushibar, Kaisar
dc.contributor.authorOsuala, Richard
dc.contributor.authorLinardos, Akis
dc.contributor.authorGarrucho, Lidia
dc.contributor.authorIgual Muñoz, Laura
dc.contributor.authorRadeva, Petia
dc.contributor.authorPrior, Fred
dc.contributor.authorGkontra, Polyxeni
dc.contributor.authorLekadir, Karim, 1977-
dc.date.accessioned2022-03-14T10:36:58Z
dc.date.available2022-03-14T10:36:58Z
dc.date.issued2021-03-05
dc.date.updated2022-03-14T10:36:58Z
dc.description.abstractThe vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions. Here, we provide a comprehensive guide for the necessary steps to prepare medical images prior to developing or applying AI algorithms. The main steps involved in a typical medical image preparation pipeline include: (i) image acquisition at clinical sites, (ii) image de-identification to remove personal information and protect patient privacy, (iii) data curation to control for image and associated information quality, (iv) image storage, and (v) image annotation. There exists a plethora of open access tools to perform each of the aforementioned tasks and are hereby reviewed. Furthermore, we detail medical image repositories covering different organs and diseases. Such repositories are constantly increasing and enriched with the advent of big data. Lastly, we offer directions for future work in this rapidly evolving field.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec710675
dc.identifier.issn1120-1797
dc.identifier.urihttps://hdl.handle.net/2445/184093
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.ejmp.2021.02.007
dc.relation.ispartofPhysica Medica, 2021, vol. 83, p. 25-37
dc.relation.urihttps://doi.org/10.1016/j.ejmp.2021.02.007
dc.rightscc-by (c) Díaz, Oliver et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationIntel·ligència artificial
dc.subject.classificationImatges mèdiques
dc.subject.classificationCuració de dades
dc.subject.classificationPreservació digital
dc.subject.otherArtificial intelligence
dc.subject.otherImaging systems in medicine
dc.subject.otherData curation
dc.subject.otherDigital preservation
dc.titleData preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
710675.pdf
Mida:
4.2 MB
Format:
Adobe Portable Document Format