Classification of medical images with convolutional networks

dc.contributor.advisorReverter Comes, Ferran
dc.contributor.authorLi, Shengnan
dc.date.accessioned2025-07-15T10:19:37Z
dc.date.available2025-07-15T10:19:37Z
dc.date.issued2024
dc.descriptionTreballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2023-2024, Tutor: Ferran Reverter Comesca
dc.description.abstractThis study explores using Convolutional Neural Networks (CNN) to predict microsatellite instability (MSI) and stability (MSS) from histology images in gastrointestinal cancer. A deep learning model was developed with Keras and TensorFlow in R, applying advanced techniques to histology images. The results show that deep CNN architectures effectively predict MSI and MSS, providing clinicians with a reliable tool to identify the microsatellite stability of tumor tissues.ca
dc.format.extent83 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/222255
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Li, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Estadística UB-UPC
dc.subject.classificationXarxes neuronals convolucionalscat
dc.subject.classificationAprenentatge profundcat
dc.subject.classificationMedicinacat
dc.subject.classificationEstadísticacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherConvolutional neural networkseng
dc.subject.otherDeep learning (Machine learning)eng
dc.subject.otherMedicineeng
dc.subject.otherStatisticseng
dc.subject.otherBachelor's theseseng
dc.titleClassification of medical images with convolutional networksca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG-EST_Li.pdf
Mida:
7.39 MB
Format:
Adobe Portable Document Format
Descripció: