Regularity of Lipschitz free boundaries in the alt-Caffarelli problem
| dc.contributor.advisor | Ros, Xavier | |
| dc.contributor.author | Domingo Pasarin, Joan | |
| dc.date.accessioned | 2024-12-03T08:28:10Z | |
| dc.date.available | 2024-12-03T08:28:10Z | |
| dc.date.issued | 2024-06-27 | |
| dc.description | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Xavier Ros | ca |
| dc.description.abstract | In this work we study the regularity of Lipschitz free boundaries in the Alt-Caffarelli problem. We prove that Lipschitz free boundaries are $C^{1, \alpha}$ by exploiting the rescaling invariance of the problem and the initial Lipschitz regularity of the boundary. Moreover, we also show that $C^{1, \alpha}$ boundaries are smooth, which combined with the previous result implies that Lipschitz free boundaries are smooth. | ca |
| dc.format.extent | 39 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/216888 | |
| dc.language.iso | eng | ca |
| dc.rights | cc by-nc-nd (c) Joan Domingo Pasarin, 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Màster Oficial - Matemàtica Avançada | |
| dc.subject.classification | Funcions harmòniques | cat |
| dc.subject.classification | Equacions en derivades parcials | cat |
| dc.subject.classification | Treballs de fi de màster | cat |
| dc.subject.classification | Problemes de contorn | cat |
| dc.subject.other | Harmonic functions | eng |
| dc.subject.other | Partial differential equations | eng |
| dc.subject.other | Master's thesis | eng |
| dc.subject.other | Boundary value problems | eng |
| dc.title | Regularity of Lipschitz free boundaries in the alt-Caffarelli problem | ca |
| dc.type | info:eu-repo/semantics/masterThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- tfm_domingo_pasarin_joan.pdf
- Mida:
- 664.01 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria