The Dirichlet problem for nonlocal elliptic operators with $C^\alpha$ exterior data

dc.contributor.authorAudrito, Alessandro
dc.contributor.authorRos, Xavier
dc.date.accessioned2021-03-16T10:03:44Z
dc.date.available2021-03-16T10:03:44Z
dc.date.issued2020-09-01
dc.date.updated2021-03-16T10:03:44Z
dc.description.abstractIn this note we study the boundary regularity of solutions to nonlocal Dirichlet problems of the form $L u=0$ in $\Omega$, $u=g$ in $\mathbb{R}^{N} \backslash \Omega$, in non-smooth domains $\Omega$. When $g$ is smooth enough, then it is easy to transform this problem into an homogeneous Dirichlet problem with a bounded right-hand side for which the boundary regularity is well understood. Here, we study the case in which $g \in C^{0, \alpha}$, and establish the optimal Hölder regularity of $u$ up to the boundary. Our results extend previous results of Grubb for $C^{\infty}$ domains $\Omega$.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec708552
dc.identifier.issn0002-9939
dc.identifier.urihttps://hdl.handle.net/2445/175170
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1090/proc/15121
dc.relation.ispartofProceedings of the American Mathematical Society, 2020, vol. 148, p. 4455-4470
dc.relation.urihttps://doi.org/10.1090/proc/15121
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions en derivades parcials
dc.subject.classificationOperadors integrals
dc.subject.otherPartial differential equations
dc.subject.otherIntegral operators
dc.titleThe Dirichlet problem for nonlocal elliptic operators with $C^\alpha$ exterior data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
708552.pdf
Mida:
351.56 KB
Format:
Adobe Portable Document Format