Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide- processing functions of ferredoxin-2 and frataxin

dc.contributor.authorGervason, Sylvain
dc.contributor.authorLarkem, Djabir
dc.contributor.authorMansour, Amir Ben
dc.contributor.authorBotzanowski, Thomas
dc.contributor.authorMüller, Christina S.
dc.contributor.authorPecqueur, Ludovic
dc.contributor.authorLe Pavec, Gwenaelle
dc.contributor.authorDelaunay-Moisan, Agnès
dc.contributor.authorBrun Cubero, Omar
dc.contributor.authorAgramunt, Jordi
dc.contributor.authorGrandas Sagarra, Anna
dc.contributor.authorFontecave, Marc
dc.contributor.authorSchünemann, Volker
dc.contributor.authorCianférani, Sarah
dc.contributor.authorSizun, Christina
dc.contributor.authorToledano, Michel B.
dc.contributor.authorD'Autréaux, Benoit
dc.date.accessioned2019-09-19T14:47:35Z
dc.date.available2019-09-19T14:47:35Z
dc.date.issued2019
dc.date.updated2019-09-19T14:47:36Z
dc.description.abstractIron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich's ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich's ataxia therapies.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec691256
dc.identifier.issn2041-1723
dc.identifier.pmid31395877
dc.identifier.urihttps://hdl.handle.net/2445/140541
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-019-11470-9
dc.relation.ispartofNature Communications, 2019, vol. 10, p. 3566
dc.relation.urihttps://doi.org/10.1038/s41467-019-11470-9
dc.rightscc-by (c) Gervason, Sylvain et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)
dc.subject.classificationMalalties neurodegeneratives
dc.subject.classificationBioquímica
dc.subject.classificationBiosíntesi
dc.subject.classificationProteïnes
dc.subject.otherNeurodegenerative Diseases
dc.subject.otherBiochemistry
dc.subject.otherBiosynthesis
dc.subject.otherProteins
dc.titlePhysiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide- processing functions of ferredoxin-2 and frataxin
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
691256.pdf
Mida:
1.86 MB
Format:
Adobe Portable Document Format