On the zero sets of bounded holomorphic functions in the bidisc
| dc.contributor.author | Charpentier, Philippe | |
| dc.contributor.author | Ortega Cerdà, Joaquim | |
| dc.date.accessioned | 2020-06-06T08:59:21Z | |
| dc.date.available | 2020-06-06T08:59:21Z | |
| dc.date.issued | 1996-06-01 | |
| dc.date.updated | 2020-06-06T08:59:21Z | |
| dc.description.abstract | In this work we prove in a constructive way a theorem of Rudin which says that if $E$ is an analytic subset of the bidisc $D^2$ (with multiplicities) which does not intersect a neighbourhood of the distinguished boundary, then $E$ is the zero set (with multiplicities) of a bounded holomorphic function. This approach allows us to generalize this theorem and also some results obtained by P.S.Chee. | |
| dc.format.extent | 20 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 136634 | |
| dc.identifier.issn | 0030-8730 | |
| dc.identifier.uri | https://hdl.handle.net/2445/164559 | |
| dc.language.iso | eng | |
| dc.publisher | Mathematical Sciences Publishers (MSP) | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.2140/pjm.1996.174.327 | |
| dc.relation.ispartof | Pacific Journal of Mathematics, 1996, vol. 174, num. 2, p. 327-346 | |
| dc.relation.uri | https://doi.org/10.2140/pjm.1996.174.327 | |
| dc.rights | (c) Mathematical Sciences Publishers (MSP), 1996 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Funcions holomorfes | |
| dc.subject.classification | Funcions de diverses variables complexes | |
| dc.subject.classification | Espais analítics | |
| dc.subject.other | Holomorphic functions | |
| dc.subject.other | Functions of several complex variables | |
| dc.subject.other | Analytic spaces | |
| dc.title | On the zero sets of bounded holomorphic functions in the bidisc | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1