Llei de Benford

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorHuang, Wei
dc.date.accessioned2017-04-11T10:56:51Z
dc.date.available2017-04-11T10:56:51Z
dc.date.issued2016-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Josep Fortiana Gregorica
dc.description.abstractThis work is about Benford’s Law (also know as first digit law) that asserts that, in some situations, the fraction of numbers that start with the digit $d$ is not the intuitively –and yet reasonable– 1/9 but the remarkable log $_{10} (1 + d ^{−1} )$. We also study, in a generalized way, the behaviour of the others digits and we will see how certains sequences (Fibonacci’s numbers, powers, etc) follows almost perfectly the values predicted by the law. Finally we will discuss daily situations that also follows the Benford’s Law (lists populations, payments, etc).ca
dc.format.extent55 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/109620
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Wei Huang, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationDistribució (Teoria de la probabilitat)
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationNombresca
dc.subject.classificationCensosca
dc.subject.classificationFrauca
dc.subject.otherDistribution (Probability theory)eng
dc.subject.otherBachelor's theses
dc.subject.otherNumeralseng
dc.subject.otherCensuseng
dc.subject.otherFraudeng
dc.titleLlei de Benfordca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
1.01 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria